$1^{\text {st }}$ Floor, Near Adarsh Jain School, Opp. Vikas Hospital, Thana Road, Najafgarh, Delhi.

Series : PTS/13

Roll No. \square
D
A Compilation By : O. P. Gupta [Call or WhatsApp @ +91-9650 350 480]
For more stuffs on Maths, please visit : www.theOPGupta.com

SECTION A

Q01. The position vectors of points A and B are \vec{a} and \vec{b} respectively. P divides $A B$ in the ratio $3: 1$ and Q is mid-point of AP. Find the position vector of Q.
Q02. Find the area of the parallelogram, whose diagonals are $\vec{d}_{1}=5 \hat{i}$ and $\vec{d}_{2}=2 \hat{j}$.
Q03. If $\mathrm{P}(2,3,4)$ is the foot of perpendicular from origin to a plane, then write the vector equation of this plane.
Q04. If $\Delta=\left|\begin{array}{ccc}1 & 3 & -2 \\ 4 & -5 & 6 \\ 3 & 5 & 2\end{array}\right|$, write the cofactor of a_{32} (the element of third row and 2nd column).
Q05. If m and n are the order and degree, respectively of the differential equation

$$
y\left(\frac{d y}{d x}\right)^{3}+x^{3}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}-x y=\sin x \text {, then write the value of } m+2 n \text {. }
$$

Q06. Write the differential equation representing the curve $y^{2}=4 a x$, where a is an arbitrary constant.

SECTION B

Q07. A part of the monthly expenses of a family is constant while the remaining varies with the price of rice, fuel etc., When the price of rice is Rs $25 / \mathrm{Kg}$ the monthly expenses of the family is Rs. 1000 . when it is Rs. $24 / \mathrm{Kg}$ the monthly expenses is Rs. 980 . Find the total monthly expenses of the family when the cost of rice is Rs $35 / \mathrm{Kg}$. Is this family below poverty line? Give two suggestions to improve their standard of living.
Q08. If $A=\left[\begin{array}{ccc}1 & 3 & 2 \\ 2 & 0 & -1 \\ 1 & 2 & 3\end{array}\right]$, then show that A satisfies the equation $A^{3}-4 A^{2}-3 A+11 I=O$.
OR If $A=\left(\begin{array}{ccc}1 & -1 & 0 \\ 2 & 5 & 3 \\ 0 & 2 & 1\end{array}\right)$, find A^{-1} using elementary row operations.
Q09. If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in GP, then using properties of determinants, show that
$\left|\begin{array}{ccc}p x+y & x & y \\ p y+z & y & z \\ 0 & p x+y & p y+z\end{array}\right|=0$, where $x \neq y \neq z$ and p is any real number.
Q10. Evaluate : $\int_{-1}^{1}|x \cos \pi x| d x$.

Q11. Evaluate : $\int \frac{1+\sin 2 x}{1+\cos 2 x} e^{2 x} d x$. OR Evaluate $: \int \frac{x^{4}}{(x-1)\left(x^{2}+1\right)} d x$.
Q12. Consider the experiment of tossing a coin. If the coin shows tail, toss it again but if it shows head, then throw a die. Find the conditional probability of the event that 'the die shows a number greater than 3' given that 'there is at least one head'.
OR How many times must a man toss a fair coin so that the probability of having at least one head is more than 90% ?
Q13. For three vectors \vec{a}, \vec{b} and \vec{c} if $\vec{a} \times \vec{b}=\vec{c}$ and $\vec{a} \times \vec{c}=\vec{b}$, then prove that \vec{a}, \vec{b} and \vec{c} are mutually perpendicular vectors, $|\overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathrm{a}}|$ and $|\vec{a}|=1$.
Q14. Find the equation of the line through the point $(1,-1,1)$ and perpendicular to the lines joining the points $(4,3,2),(1,-1,0)$ and $(1,2,-1),(2,1,1)$.
OR Find the position vector of the foot of perpendicular drawn from the point $\mathrm{P}(1,8,4)$ to the line joining $\mathrm{A}(0,-1,3)$ and $\mathrm{B}(5,4,4)$. Also find the length of this perpendicular.
Q15. Evaluate : $\sin \left(2 \tan ^{-1} \frac{2}{3}\right)+\cos \left(\tan ^{-1} \sqrt{3}\right)$. OR Prove that : $\cot ^{-1} 7+\cot ^{-1} 8+\cot ^{-1} 18=\cot ^{-1} 3$.
Q16. If $x=\sin t, y=\sin k t$, show that $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+k^{2} y=0$.
Q17. Differentiate $\tan ^{-1} \frac{\sqrt{1-x^{2}}}{x}$ with respect to $\cos ^{-1}\left[2 x \sqrt{1-x^{2}}\right]$, where $x \in\left(\frac{1}{\sqrt{2}}, 1\right)$.
Q18. It is given that for the function $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+\mathrm{bx}^{2}+\mathrm{ax}+5$ on [1,3], Rolle's theorem holds with $c=2+\frac{1}{\sqrt{3}}$. Find the values of a and b. Q19. Evaluate $: \int \frac{1+3 x}{\sqrt{5-2 x-x^{2}}} d x$.

SECTION C

Q20. Let $A=\{1,2,3, \ldots, 10\}$ and R be the relation in $A \times A$ defined by $(a, b) R(c, d)$ if $a+d=b+c$ for a, b, c, d in $A \times A$.
Prove that R is an equivalence relation. Also obtain the equivalence class $[(3,7)]$.
OR Let $f: N \rightarrow R$ be a function defined as $f(x)=4 x^{2}+12 x+15$.
Show that $f: N \rightarrow S$ is invertible, where S is the range of f. Hence find inverse of f.
Q21. Compute, using integration, the area bounded by the lines $x+2 y=2, y-x=1$ and $2 x+y=7$.
Q22. Find the particular solution of the differential equation $x e^{y / x}-y \sin \left(\frac{y}{x}\right)+x \frac{d y}{d x} \sin \left(\frac{y}{x}\right)=0$, given that $\mathrm{y}=0$, when $\mathrm{x}=1$.
OR Obtain the differential equation of all circles of radius r.
Q23. Show that the lines $\vec{r}=(-3 \hat{i}+\hat{j}+5 \hat{k})+\lambda(-3 \hat{i}+\hat{j}+5 \hat{k})$ and $\vec{r}=(-\hat{i}+2 \hat{j}+5 \hat{k})+\mu(-\hat{i}+2 \hat{j}+5 \hat{k})$ are coplanar. Also, find the equation of the plane containing these lines.
Q24. 40% students of a college reside in hostel and the remaining reside outside. At the end of year, 50% of the hosteliers got A grade while from outside students, only 30% got A grade in the examination. At the end of year, a student of the college was chosen at random and was found to get A grade. What is the probability that the selected student was a hostelier?
Q25. A man rides his motorcycle at the speed of $50 \mathrm{~km} / \mathrm{h}$. He has to spend Rs. 2 per km on petrol. If he rides it at a faster speed of $80 \mathrm{~km} / \mathrm{h}$, the petrol cost increases to Rs. 3 per km. He has atmost Rs. 120 to spend on petrol and one hour's time. Using LPP find the maximum distance he can travel.
Q26. A jet of enemy is flying along the curve $y=x^{2}+2$ and a soldier is placed at the point (3, 2). Find the minimum distance between the soldier and the jet.

